翻訳と辞書
Words near each other
・ Quasi-derivative
・ Quasi-elemental
・ Quasi-empirical method
・ Quasi-empiricism in mathematics
・ Quasi-experiment
・ Quasi-fibration
・ Quasi-finite field
・ Quasi-finite morphism
・ Quasi-foreign corporation
・ Quasi-Frobenius Lie algebra
・ Quasi-Frobenius ring
・ Quasi-Fuchsian group
・ Quasi-geostrophic equations
・ Quasi-harmonic approximation
・ Quasi-Hilda comet
Quasi-homogeneous polynomial
・ Quasi-Hopf algebra
・ Quasi-identifier
・ Quasi-invariant measure
・ Quasi-irreversible inhibitor
・ Quasi-isometry
・ Quasi-isomorphism
・ Quasi-judicial body
・ Quasi-judicial proceedings
・ Quasi-legislative capacity
・ Quasi-Lie algebra
・ Quasi-likelihood
・ Quasi-linkage equilibrium
・ Quasi-market
・ Quasi-maximum likelihood


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Quasi-homogeneous polynomial : ウィキペディア英語版
Quasi-homogeneous polynomial
In algebra, a multivariate polynomial
: f(x)=\sum_\alpha a_\alpha x^\alpha\text\alpha=(i_1,\dots,i_r)\in \mathbb^r \text x^\alpha=x_1^ \cdots x_r^,
is quasi-homogeneous or weighted homogeneous, if there exists ''r'' integers w_1, \ldots, w_r, called weights of the variables, such that the sum w=w_1i_1+ \cdots + w_ri_r is the same for all nonzero terms of ''f''. This sum ''w'' is the ''weight'' or the ''degree'' of the polynomial.
The term ''quasi-homogeneous'' comes form the fact that a polynomial ''f'' is quasi-homogeneous if and only if
: f(\lambda^ x_1, \ldots, \lambda^ x_r)=\lambda^w f(x_1,\ldots, x_r)
for every \lambda in any field containing the coefficients.
A polynomial f(x_1, \ldots, x_n) is quasi-homogeneous with weights w_1, \ldots, w_r if and only if
:f(y_1^, \ldots, y_n^)
is a homogeneous polynomial in the y_i. In particular, a homogeneous polynomial is always quasi-homogeneous, with all weights equal to 1.
In other words, a polynomial is quasi-homogeneous if all the \alpha belong to the same affine hyperplane. As the Newton polygon of the polynomial is the convex hull of the set \, the quasi-homogeneous polynomials may also be defined as the polynomials that have a degenerate Newton polynomial (here "degenerate" means "contained in some affine hyperplane").
==Introduction==
Consider the polynomial f(x,y)=5x^3y^3+xy^9-2y^. This one has no chance of being a homogeneous polynomial; however if instead of considering f(\lambda x,\lambda y) we use the pair (\lambda^3,\lambda) to test ''homogeneity'', then
: f(\lambda^3 x,\lambda y)=5(\lambda^3x)^3(\lambda y)^3+(\lambda^3x)(\lambda y)^9-2(\lambda y)^=\lambda^f(x,y). \,
We say that f(x,y) is a quasi-homogeneous polynomial of type
(3,1), because its three pairs (''i''1,''i''2) of exponents (3,3), (1,9) and (0,12) all satisfy the linear equation 3i_1+1i_2=12. In particular, this says that the Newton polygon of f(x,y) lies in the affine space with equation 3x+y=12 inside \mathbb^2.
The above equation is equivalent to this new one: \tfracx+\tfracy=1. Some authors〔J. Steenbrink (1977). ''Compositio Mathematica'', tome 34, n° 2. Noordhoff International Publishing. p. 211 (Available on-line at (Numdam ))〕 prefer to use this last condition and prefer to say that our polynomial is quasi-homogeneous of type (\tfrac,\tfrac).
As noted above, a homogeneous polynomial g(x,y) of degree ''d'' is just a quasi-homogeneous polynomial of type (1,1); in this case all its pairs of exponents will satisfy the equation 1i_1+1i_2=d.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Quasi-homogeneous polynomial」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.